Methods for Distributed Compressed Sensing

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for Distributed Compressed Sensing

Compressed sensing is a thriving research field covering a class of problems where a large sparse signal is reconstructed from a few random measurements. In the presence of several sensor nodes measuring correlated sparse signals, improvements in terms of recovery quality or the requirement for a fewer number of local measurements can be expected if the nodes cooperate. In this paper, we provid...

متن کامل

Distributed Compressed Sensing

Compressed sensing is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algorithms for multi-signal ensembles that exploit both intraand inter-signal correlation structures. T...

متن کامل

Frames for compressed sensing using coherence

We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.

متن کامل

Joint Sparsity Models for Distributed Compressed Sensing

Compressed sensing is an emerging field based on the revelation that a small group of linear projections of a sparse signal contains enough information for reconstruction. In this paper we introduce a new theory for distributed compressed sensing (DCS) that enables new distributed coding algorithms for multi-signal ensembles that exploit both intraand inter-signal correlation structures. The DC...

متن کامل

Distributed Compressed Sensing for Accelerated MRI

INTRODUCTION: Compressed sensing has recently been introduced as a powerful method to reduce the number of required samples by exploiting signal compressibility [1,2]. Application to MRI was proposed for reconstruction of images that have a sparse representation in a known transform domain (e.g. wavelets) from randomly undersampled k-space data [3]. The maximum acceleration is limited by the im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Sensor and Actuator Networks

سال: 2013

ISSN: 2224-2708

DOI: 10.3390/jsan3010001